33 research outputs found

    Scalable Real-Time Vehicle Deformation for Interactive Environments

    Full text link
    This paper proposes a real-time physically-based method for simulating vehicle deformation. Our system synthesizes vehicle deformation characteristics by considering a low-dimensional coupled vehicle body technique. We simulate the motion and crumbling behavior of vehicles smashing into rigid objects. We explain and demonstrate the combination of a reduced complexity non-linear finite element system that is scalable and computationally efficient. We use an explicit position-based integration scheme to improve simulation speeds, while remaining stable and preserving modeling accuracy. We show our approach using a variety of vehicle deformation test cases which were simulated in real-time

    Dual-Quaternion Julia Fractals

    Full text link
    Fractals offer the ability to generate fascinating geometric shapes with all sorts of unique characteristics (for instance, fractal geometry provides a basis for modelling infinite detail found in nature). While fractals are non-euclidean mathematical objects which possess an assortment of properties (e.g., attractivity and symmetry), they are also able to be scaled down, rotated, skewed and replicated in embedded contexts. Hence, many different types of fractals have come into limelight since their origin discovery. One particularly popular method for generating fractal geometry is using Julia sets. Julia sets provide a straightforward and innovative method for generating fractal geometry using an iterative computational modelling algorithm. In this paper, we present a method that combines Julia sets with dual-quaternion algebra. Dual-quaternions are an alluring principal with a whole range interesting mathematical possibilities. Extending fractal Julia sets to encompass dual-quaternions algebra provides us with a novel visualize solution. We explain the method of fractals using the dual-quaternions in combination with Julia sets. Our prototype implementation demonstrate an efficient methods for rendering fractal geometry using dual-quaternion Julia sets based upon an uncomplicated ray tracing algorithm. We show a number of different experimental isosurface examples to demonstrate the viability of our approach

    Convex Hulls: Surface Mapping onto a Sphere

    Full text link
    Writing an uncomplicated, robust, and scalable three-dimensional convex hull algorithm is challenging and problematic. This includes, coplanar and collinear issues, numerical accuracy, performance, and complexity trade-offs. While there are a number of methods available for finding the convex hull based on geometric calculations, such as, the distance between points, but do not address the technical challenges when implementing a usable solution (e.g., numerical issues and degenerate cloud points). We explain some common algorithm pitfalls and engineering modifications to overcome and solve these limitations. We present a novel iterative method using support mapping and surface projection to create an uncomplicated and robust 2d and 3d convex hull algorithm

    Real-Time Character Rise Motions

    Full text link
    This paper presents an uncomplicated dynamic controller for generating physically-plausible three-dimensional full-body biped character rise motions on-the-fly at run-time. Our low-dimensional controller uses fundamental reference information (e.g., center-of-mass, hands, and feet locations) to produce balanced biped get-up poses by means of a real-time physically-based simulation. The key idea is to use a simple approximate model (i.e., similar to the inverted-pendulum stepping model) to create continuous reference trajectories that can be seamlessly tracked by an articulated biped character to create balanced rise-motions. Our approach does not use any key-framed data or any computationally expensive processing (e.g., offline-optimization or search algorithms). We demonstrate the effectiveness and ease of our technique through example (i.e., a biped character picking itself up from different laying positions)

    Inverse Kinematics with Dual-Quaternions, Exponential-Maps, and Joint Limits

    Full text link
    We present a novel approach for solving articulated inverse kinematic problems (e.g., character structures) by means of an iterative dual-quaternion and exponentialmapping approach. As dual-quaternions are a break from the norm and offer a straightforward and computationally efficient technique for representing kinematic transforms (i.e., position and translation). Dual-quaternions are capable of represent both translation and rotation in a unified state space variable with its own set of algebraic equations for concatenation and manipulation. Hence, an articulated structure can be represented by a set of dual-quaternion transforms, which we can manipulate using inverse kinematics (IK) to accomplish specific goals (e.g., moving end-effectors towards targets). We use the projected Gauss-Seidel iterative method to solve the IK problem with joint limits. Our approach is flexible and robust enough for use in interactive applications, such as games. We use numerical examples to demonstrate our approach, which performed successfully in all our test cases and produced pleasing visual results.Comment: arXiv admin note: substantial text overlap with arXiv:2211.0033

    BHPR research: qualitative1. Complex reasoning determines patients' perception of outcome following foot surgery in rheumatoid arhtritis

    Get PDF
    Background: Foot surgery is common in patients with RA but research into surgical outcomes is limited and conceptually flawed as current outcome measures lack face validity: to date no one has asked patients what is important to them. This study aimed to determine which factors are important to patients when evaluating the success of foot surgery in RA Methods: Semi structured interviews of RA patients who had undergone foot surgery were conducted and transcribed verbatim. Thematic analysis of interviews was conducted to explore issues that were important to patients. Results: 11 RA patients (9 ♂, mean age 59, dis dur = 22yrs, mean of 3 yrs post op) with mixed experiences of foot surgery were interviewed. Patients interpreted outcome in respect to a multitude of factors, frequently positive change in one aspect contrasted with negative opinions about another. Overall, four major themes emerged. Function: Functional ability & participation in valued activities were very important to patients. Walking ability was a key concern but patients interpreted levels of activity in light of other aspects of their disease, reflecting on change in functional ability more than overall level. Positive feelings of improved mobility were often moderated by negative self perception ("I mean, I still walk like a waddling duck”). Appearance: Appearance was important to almost all patients but perhaps the most complex theme of all. Physical appearance, foot shape, and footwear were closely interlinked, yet patients saw these as distinct separate concepts. Patients need to legitimize these feelings was clear and they frequently entered into a defensive repertoire ("it's not cosmetic surgery; it's something that's more important than that, you know?”). Clinician opinion: Surgeons' post operative evaluation of the procedure was very influential. The impact of this appraisal continued to affect patients' lasting impression irrespective of how the outcome compared to their initial goals ("when he'd done it ... he said that hasn't worked as good as he'd wanted to ... but the pain has gone”). Pain: Whilst pain was important to almost all patients, it appeared to be less important than the other themes. Pain was predominately raised when it influenced other themes, such as function; many still felt the need to legitimize their foot pain in order for health professionals to take it seriously ("in the end I went to my GP because it had happened a few times and I went to an orthopaedic surgeon who was quite dismissive of it, it was like what are you complaining about”). Conclusions: Patients interpret the outcome of foot surgery using a multitude of interrelated factors, particularly functional ability, appearance and surgeons' appraisal of the procedure. While pain was often noted, this appeared less important than other factors in the overall outcome of the surgery. Future research into foot surgery should incorporate the complexity of how patients determine their outcome Disclosure statement: All authors have declared no conflicts of interes

    Generating responsive life-like biped characters

    No full text

    Quaternion fourier transform for character motions

    No full text

    Virtual Reality:Ethical Challenges and Dangers [Opinion]

    No full text
    corecore